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The problem of determination of currents and electric fields in a slightly 
conducting fluid moving in a flat channel in a perpendicular magnetic field 
has been examined by a number of authors [l to 41; the most comprehensive 
of these studies belong to A.B.Vatazhin. 

In all references mentioned, calculations of fields and currents were 
carried out under the assumption that the electric conductivity of the fluiu, 
the distribution of velocity, and the external magnetic ?ield (%G all of 
which we will refer subsequently as controls), 
functions of coordinates. 

are somehow or other given 
In those cases where it was possible to obtain a 

solution for controls which were prescribed arbitrarily in a certain class 
of functions (for example, for constant conductivity and constant ma netlc 
field, while the velocity depended only on the transverse coordinate ‘3 it was 
permissible to select such functions from the indicated classes which cor- 
responded to optimum regimes In a deflnlte sense. 

However, general solutions of this type can be obtained in quite rare 
cases. On the other hand, if the problem of optimization (in a definite 
sense) :s presented from the verv be&nnina for the distrzbution of currents 
with respect to controls which can be selected from functions of some (If-- 
possible, sufficiently broad) class, then for the solution of this problem 
the knowledge of distribution of currents for arbitrary control in the in;ii- 
cated class is not required at all *. A general method of solution ftirthis 
type of optimum problems in mathematical physics was developed in is>. In 
this reference a procedure Is indicated which allows, from the very begin- 
ning, to isolate controls which can only turn out to be opt?mum (Weierstrass 
condition). Further investigation is confined only to selected controls and 
In many cases can be carried to conclusion. 

* If, however, such a solution is known, then the search for optimum con- 
trols is simplified in a corresponding fashion: the problem of Mayer- 
Bolza of variational calculus reduces to the simplest case. Besides, 
it Is understood that no special methods are required for the determi- 
nation of the optimum control. 
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The present study contains an example for the application of the general 
theory developed in [5]. The problem of findi 

"i 
the optimum control U(X Y) 

among sectionally continuous functions a&,~) conductivity of the fluid) 
of two Independent variables is examined. 
ty ~mj,<4s,Y)<~rj,, . 

The functicms satisfy the inequali- 
The optimum control o(n,g) corresponds to a dis- 

tribution of currents and to a distribution of eiectric field which satisfy 
certain experimental requirements. These requirements, together with con- 
ditions for the problem, are formulated in detail in Section i. 

The solution of the problemsturns out to be sufficiently simple; this is 
of course connected with the fact that the control o(x,p) enters linearly 
into the original equations. 
ble values ~(x,y) , 

Because of this the inequality, limiting possi- 
plays a decisive role in the determination of the opti- 

mum control. 

1. !Rm dirtribution of ourmnt j &nd potentfal of l lrotric field 2 
In a aonduotlng medium moving with the velocity v(u(x,p),O,O) in a mag- 

netic field B(O,O, -B(X)) is described by Equations [l] 

div j = 0, j = a,( - grad9 + d [v, B]) (1-f) 
Here CI is the electric conductivity of the fluid. 

We will consider functions ~(3) and B(x) as given. As is :rell known, 

this corresponds to the frequently used inmagnetohydrodynamics approximation 

of small magnetic Reynolds numbers when the distribution of velocities practi- 

cally coincides with the hydrodynamic distribution and the induced magnetic 

fields are negligibly small *. 

As for the function o(s,y) , its values are determined at any point in 

the stream by the possibility at our disposal of controlling the conductivity 

of the fluid. As a rule those possibilities are limited and in the best case 

one succeeos in reaching some maximum value of conductivity a,, . On the 

other hand, the conductivity of the fluid itself (in the absence of external 

Y interactions such as heating **, addi- 

fl tives, etc.) determines the minimum 

H G F f 
1 possible value ad. . Therefore, it 

6 

-$;' 

i 
can be assumed that the conductivity 

jI 

in all cases satisfies the inequality 

Gmin <cI. (XT Y> <Gmax (4.2) 

1 I D 
This 

Pig.1 

Introducing the notation 

for the 

inequality is quite essential 

following treatment. 

j- - curl (kz*). jx=p, iv= p = l/a (1.3) 

* Functions D(V) and s(r) are fixed only for the purpose of slmplify- 
lng the optimum problem. It is possible of course to optimize the dis- 
tribution of currents with respect to these controls also. 

** We neglect the temperature dependent change in conductivity due to Joule 
heatlng. 
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Equations (1.1) and Inequality (1.2) are written In the following form 

azl 
az= 

-pCl, &p,,= 0 

a9 
C29 

a9 
az= ay= - Cl, 

a51 _+g=o 
ax 

(1.4) 

The boundary conditions of the problem can be most diversified. We will 

examine the case where the walls p = f 6 of the channel (Pig. 1) are insu- 

lators everywhere with exception of regions 1x1 < x , which are located on 
both walls opposite each other and which represent ideally conducting 

electrodes [l]. The latter are connected through the load R , through 

which electrical current flows when fluid moves in the magnetic field. 

A 

I = 5 C2 (x, & 6) dx 
-A 

(1.5) 

We also present the following expression for the magnitude of Joule losses 

d _i;& y dx [(B2 + (5")"I ~(3, Y) (1.6) 
---03 

For the schematic shownin Fig.1, the problem of conductivity control of 

the field will be solved in such a manner that (Problem 1) the functional I 

will reach the maximum possible value or (Problem 2) the functional Q will 

reach the minimum possible value. 

The boundary conditions for the problems presented will be spelled out in 

Section 4. 

2, Utlonr ?or Lagrangr'~ multiplirrr. P r o b 1 e m 1 . According 

to [51 
H(l) = - &PC1 + %2t2+ rig- P52)- r125’ - 

- r* UPmax - P) (P - Pmin) - P*21 (2.4) 

Here pI Is an additional cohtrol and ci, nI, r+ are Lagrange's multi- 

pliers *. The conditions for stationary state are reduced to Equations 

a%,/ ax + 8Ql ay = 0, q2/d~ + aq2i ay = 0 
(2.2) 

fP%, + q2 = 0, Prll - %2 = 0 

P%l + Sell1 - r* (BP - Pmax - Pm14 = 09 1r*p* = 0 

The additional control p+ is introduced by Equation 

I(Pmax - P) (P - Pmin) - P*' = 0 

+ In this paper the notation 5,, . . . is used for quantities denoted In 
C51 by 51 + ?I7 > . . . . 
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It is convenient to convert Equations (2.2) to another form; letusintro- 

duce functions UJ~ (x,y) and UJ,(X,~) through the relationships 
(2.4) 

El = - do, I ay, ga = - 0, / dy, q, = aollax, qs = ao,/ax 

The first pair of Equations (2.2) is satisfied Identically; the second 

pair is now written as 

p&O,/ 6y = &Q/ax, $w,/ ax = - do,/ ay 1~2.5) 

Eliminating ulp and w1 we subsequently find 

P-6) 

Problem 2. Function H is equal to 

H(2) 
= H(l) - p [(Cl)2 + (6”)“l (2.7) 

Equations for Lagrange’s multipliers have the form 

a& / dx + dTll I dy = 0, ag,/ax+aq,Iay =o 

PEl+ rl2 + 2PS1 = 0, Prll - E2 + 2PC2 = 0 (2.8) 

C?Er -t- C2Q - r* t2P - Pmax - Pmin) + (5’)” + (F”)” = 09 r*p* = 0 

We will introduce functions UI~(X,~) and tu,(x,y) according to Formulas 

(2.4). The second pair of Equations (2.8) is now written in the form 

or, if Equations (1.4) (second line) Is taken into account 

p; (01 + 222) - ?J$ = 0, p 2. (01 + 2.22) + 2 = 0 (2.10) 

Ii ua anti IQ are eli~im*tcU r%oa Equations (2.9), then, &kzlBg fnto 

account the last equation In the second line of (1.4), we will consequently 

find 

Boundary conditions for functions ult. and wp have different forms for 

different initial boundary problems. These conditions will be spelled out 

in Section 4. 

3. Woiorltrrrr oondltlon, Problem 1. According to the Weier- 

strass condition the difference 

AH(l) = H\‘, (p, P’, 5”) - H(l) (P, Z’, Z2) = - El (pcl - Pz’) + 

+ E2 (5” - Z2) - q1 (PC2 - PZ2) - 72 (51 - 27) (3.1) 

must be positive for all permissible P, Z1, 22 ; those values of these 
variables will be admissible which are connected with the optimum values of 

p, C’ , C2 through Equations 
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(PC1 - PZ’) 5# + (p52 - PZ2) y, = 0, (52 - Z2) St- (5” - Zl) fJt = 0 (3.2) 

Here .xt and Ft are any real numbers which satisfy the condition xt2 + 

+ pta = 1 and which have the significance of directional cosines of the 

tangent to the curve of possible discontinuity of conductivity. Equations 
(3.2) express continuity of functions 8’ and _$ along this curve. 

We emphasize that controls p and P satisfy the last inequality (1.4). 

The system of Equations (3.2) permits to eliminate the variables 2’ and 

Z? from Expression (3.1). After Introduction of functions UI~ and UI= and 
vector j(<‘,C”) the Welerstrass condition assumes the form (we omit the 

calculations) 

AH”’ = p-P p-P. ao, -- 
P ( ---p---~n~-j.gradw~) >O (3.3) 

Let n be the direction with direction cosines (r/%, -x$); inequality 

(3.3) must be satisfied for arbitrary n . 

The structure of the left side fn the last inequality shows that the two 

cases are possible 

1) 
p--P 

SLY> 0, A = sin% -j. grade, < 0 

2) ~-:-:P-<o, A = sjn13-- j. grado,>O 

Case 1, First of all we note that from the inequality a > 0 and 

the last inequality (1.4) it follows that p = p, . For p = p, the para- . 
me car a . varies wlthln the llmlts 

o<,s<,-k!!L 
Pmax 

Smax < 1 (3.4) 

Let us assume that j *gad ~1, c c It Is clear that here the condition 

A,<0 is not fulfilled because a d,*ectlon n can always be found for 

which ~~a~~/a~ = 0 . The case j. grad ms > 0 remains. If the direction 

n is located within angles ooo (Fig. 2), which are bounded by straigh~t 

lines perpendicular to vectors j and gradu, , then j,,bu&n < 0 , and the 

Inequality A < () is satisfied. If n Is located outside the angles cob, 

then It Is necessary to find the maximum of the function 

for conditions (see Fig. 2) $ = x + cp, x = const , and it is necessary tc 

require that the corresponding value of A be negative. It is easy to 

verify that the function J(cp, x + cp) reaches a maximum at (4 = -+x, i.e. 

for a direction n , which devides in half the acute angle x . For this 

direction 

f max = f (-V,x, ‘is x>= Smax i I grad a2 I cos2 V2x) 

The corresponding value of A is equal to 
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A,,, = j 1 grad a2 1 Ismax cos2 (%‘,x) - cos xl 

According to statements above we must have 

&ax co9 ('/,x) - cog 1c < 0 

Or 
bmax - 2) cos2 (‘l& + 1 < 0 

From this 

&2 wsm' (3.5) 

We recall that for 

j-grad 02> 0 Ix\\< n/2. 

If one takes into consideration inequality 

Fig. 2 (3.4), it becomes clear that in the case under 
examination condition (3.5) limits from above 

the absolute value of the acute angle x between vectors j and grad UI,. 

The value of the upper limit depends tin smax; this limit is equal to )n 

for smax* 0 (P,in= pm,,) and to 0 for 8’max= 1 (P,;, = 0 or P,,, =*)a 

C a s e 2. Considerations quite analogous 

to the ones presented above lead us to the 

inequality (Fig.3) 

x>2 COI-’ 
v&i 

(3.6) 

which is fulfilled for the condition 

j-grad ma< 0. 

hirmet@r 8 min Is determined by Formula 

Pmax 
S,f, = 1 - - 

Pmin 

and In case 2 srnin < S< 0 

As we see, the Inequality (3.6) limits from below the absolute value of 

the obtuse angle x between j and grad UJ= . The magnitude of the lower 

limit depends on the value smin ; this limit is equal to n/2 for smin=O 

(P min.' Pmax ) and to r( for grnh = -0 (p,& = 0 OF pmax = -) . 

Simultaneously we establish that the condition ,4 = 0 can be fulfilled 

(if one abstains r'rom special cases j = 0 or grad UJ, = 0) only on indi- 

vidual curves an0 not in entire regions; this follows from the detmation 

of the quantity A which contains the invarient COmpOnent Bj,aUJp/ah . 

Xn addition to this, the scalar product j.grad m1 cannot become zero In 

the optlm,um regime (with exception of cases mentioned above) because in the 

opposite case, apparently, the Weierstrass condition would be violated. 
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Results of material presented above are sUmmarized in the following way. 

Theorem. A maximum of functional 1 with limitations of (1.4) 

can be achieved for the following optimum controls: 
(3.7) 

1) fJ = Pmax for j-grad us> 0, xf co P 

21 p = Pmin for j-grad Oa < 0, x >, a~ - WP p 

Parameter p Is determined by Formula 

P= 
Pmax- Pmin 

Pmax + Pmin 

Problem 2. In accordance with the 

difference 

Welerstrass condition, the 

AH@) = A@’ - p [(1;‘)2 + (5”)21 + p r(zl!z + (Z”)“J (3.8) 

must be positive. 

Following the reasoning carried out above for Problem 1, we will write 

directly the analog to inequality (3.3); we obtain 

AH@’ = (P - PI2 * 8% 
PP Jnan * 9 j*grado, + pG pi2>0 (3.9) 

As before, two cases are possible 

1) A” = sj$ --*grad o2 +~pj,,~--pj~<O 

2) s==y-<o: A” zz S&2 - j+grad co2 + spin2 - pj” > 0 

Let us Introduce vector W = grad UJ~ + pj . It is not difficult to see 

that the quantity A0 depends on @ exactly in the same way as quantity 4 

depends on grad ulp . Therefore, in both cases mentioned we arrive at the 

same conclusions with respect to optimum controls, as were obtained for 

Problem 1 and formulated In the theorem. The only difference consists in 

that in the formulas of the theorem the vector grad ~1~ should be replaced 

by (r Y and that the angle x should be given the significance of the angle 

between vectors j and W = grad u)e + pj . The latter angle, in agreement 

with the theorem, may be eithe_ p acute (case 1) or obtuse (case 2). This, 

however, cannot be said now about the angle between .ectors j and gradw,. 

This angle may be obtuse both in cases 1 and 2 (but acute only in case 1). 

The condition indicated can result under certain conditions In nonuniqueness 

Of optimum regimes which are determined by the Weierstrass condition (see 

Section 4). It Is clear that there is nothing paradoxical in this because 

the Weierstrass condition In itself is a necessary condition for a Strong 

relative minimum. Within the framework of the utilized method the absolute 

minimum has to be determined by dlre.?t computation of values of the fLUlCtiOn- 

al for relative minima and by comparison of these values among each other. 
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4. Example. Homogeneous magnetic field B ; the velocity de- 

pends only on coordinate y (a solution of the problem for the case of 

constant conductivity was obtained by Vatazhin [l]). 

A schematic of the arrangement is shown in 

which express the constancy of potentiai 2’. 

appearance of the normal component of current 

and also conditions at infinity and Ohm’s law 

have the form 

21 (5, -+ 6) = z*l = const, 

Fig.1; boundary conditions 

on electrodes, and the dis- 

density C” on insulators, 

for the electrical circuit, 

tXl<h 

z2(x, -& 8) 1 x>). = 2+2== const, Z2(S, * 8) lr<_)r = ix2 = Gonst 

zqw, + 8)-zl(co,-6) =.9(-w, +q--zy- w,-8) = ;I3 f V&=8 * 
-3 

22(w,-&-8)-z2(-ca,+8)=R-1[z+‘-z_1] - (4.1) 

Problem 1. Taking Into account Equatlons (2.2) let us write the 

following expression for the first variation of functional I . The expression 

was formed by means of Lagrange’s multipliers [5] (see Fig.1) 

F H B D 

is 5, 
+ fq&l + q,sz21 dt - is !a + [Tp + q&z~l dt + . 

E A C 
G 

+ $.iq&' + q28z21 dt -i 
A 

Iq16z' + q26z21 dt - s Iigw + E&Y dt + 
F B H 

E 

Equating this expression to zero we obtain the boundary conditions for 

Lagrange’s multipliers; it is necessary to take into account in this case 
that the variations entering here are connected with relationships which 

were obtained by variation of Equations (4.1). In addition to this, verti- 

cal sections X,4 and D_g (Pig.1) should be moved to infinity. We obtain 

on electrodes (FG and Bc) 

Yz = 0 
on insulators (EJ’, (;H, AB an5 CD) 

(4.3) 

rlr = 0 (4.4) 
at infinity 

A 

Stdt=i &t&=0, 

A 

H 

~~adt=~~2dt=0 (4.5) 
D H I) 
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Terms remaining in (4.2) form Equation 

rF D 

[i 

qa dt - s q2 dt - 
c 

i]dz*‘+[~rlrrn -f’)adf + 1]k2f 
G AI 

+ 5 q, dt &z+l - 4 ql dt i3qa = 0 
F B 

variations entering here are connected through the relationship 

&z,l - 6z_l = R Mz,~ - ~z_~I 

(4.6) 

Eliminating variation az+l from (4.6) by means of this equation, we 
arrive at a relationship In which the variations nay be consldered already 

independent and the corresponding coefficients may be equated to zero. We 

obtain 
G C 

s 
q1 dt = qr dt 

F % 

F D’ 

s q2 dt - s q2 dt - 1 = - f&z dt 
E c F 

H B 

5 qz dt - 
OF 

qz dt + 1 = R 1 ql dt 
G s F 

(4.7) 

We will write the obtained relationships utilizing functions w1 and Q 
introduced above. We shall have 

on the electrodes 

0s (& f 6) = 029 = const, do,/@ = 0 (4.8) 

on the insulators 

01 (5, zk 4 Jx,h = w1.e = const, 01 (z, * 6) j$..+ = Ol_ = const 

aw,, ay = 0 (4.9) 

at infinity 

01(@46)-=.~~(~,---6), ol(-oo,~)==ol(-oQ, -8) 

0,(00,6) =we(oo, -8), os(- oo,6)=oe(- 00, -6) 610) 

In addition to this 

@2+ - 02- + 1 = R [wl+ - WJ (4.11) 

I;f we now introduce the function u , which is related to P’ by Equation 

then Equations (1.4) will be rewritten in an equivalent form 

(4.12) 

(4.13) 
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and vector j becomes 

j= - p-l grad u 

Equations (4.13) will coincide with Equations (2.5) if the latter equa- 

tions uta is replaced by u and utl by 2' . A comparison of boundary 

conditions (4.1) and (4.8) to (4.11) shows that for any function p(s,y) the 

relationships 

apply. 
2” = eo1, u = EC02 (4.15) 

Equations (4.14) and (4.15) show that vectors j and grad UJ= are anti- 

parallel everywhere (x = TT) . Remembering Weierstrass criterion for problem 

1 (theorem), we conclude that for the optimum regime p = p _* everywhere, 

a result which is in complete agreement with considerations of a physical 

nature. 

We note that utilizing solution !lJ , we would have also arrived at this 

conclusion. However, the maximum of functional i would have been determined 

with respect to a class of functions of the equation which assume the same 

constant value everywhere, while the result obtained by the general method 

[5] applies to a broader class of sectionally continuous functions of two 

independent variables. 

Problem 2 In this problem boundary conditions (4.8) to (4.10) 

are preserved for Lagrange's multipliers; instead of condition (4.11) the 

following equality is maintained: 

@2+ - 02.. + 21R = R [(01+ + 22+2) - (oz_ + 22_2)1 (4.16) 

As before, we find that functions u (see (4.12)) and wz are related 

by Equation 

' = 2IR 
--LO2 

The Weierstrass criterion now assuaes the form 

A&2’ _ f=‘-’ --P( P 

From this it is not difficult to draw conclusions with regard to the 

possibility of the optimum regimes 

For p = const 

Cl3 

1) 2IRb<1, P’P max 

2) 2IRf e> 1, p = Pm1n 
3) 2IR/e = 1, special case 

the expression UR/E is easy to compute, it is equal to 

21R 2Ra 
- = *2p + Ra E 

parameter Q is given by the relation 
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u = K(k) -1 
[ 1 

--- 
Kfk’) ’ 

k kS =t’l -k= 

Here X(k) is a complete elliptical integral of the first kind. 

Inequalities which apply to regimes 1 and 2 take correspondingly the form 

From this it follows that for R < 2p,,/a only the control p = pm_ is 

possible , for R > 2pw4,= /a only the control p = c a is possible. If 

parameter A is Included in the interval (2pdn,/a, 2p,,,/a) then the Weier- 

strass condition permits both controls p,., and cmip. A similar possibl- 

llty was already discussed at the end of Section 3. It remains to point out 

the citerion for the determination of an absolute mlnim~. It is easy to 

verify, using expression Cl] for furictlon Q for p = const 

that the absolute minimum is reached when 

P=P max’ when 2c+ pmln <I? <20r-'vPmaxPmtn 

P = Pmln7 Whar 2a-’ ~PmaxPmi*<R<2u-'Pmax 

As far as the special regime Is concerned, it should be disregarded since 

already with respect to the class of functions of the equation, which assume 

a constant value everywhere, this regime corresponds to a maximum and not a 

m~nirn~ of functional I . This 1s confirmed by direct computation. The 

Weierstrass criterion Is fulfilled in this case in the weak sense. 

In conclusion we note that all deductions made for Problem 2 could have 

been obtained from the corresponding statements for Problem 1 with the aid 

of Equation 
Q = le -PR 

which holds for the case of homogeneous magnetic field 3 . 

Here the results were cbtained directly for the purpose of illustrating 

practical examples which are typical for application of the general method 

c51. 
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